

JSON-delta: a diff/patch pair for JSON-serialized data structures

JSON-delta is a multi-language software suite for computing deltas
between JSON-serialized data structures, and applying those deltas as
patches. It enables separate programs at either end of a
communications channel (e.g. client and server over HTTP, or two
processes using IPC) to manipulate the same data structure while
minimizing communications overhead.

If you’re not clear what this means, or you simply can’t see the
point, see JSON-delta by example for a (somewhat whimsical) exposition of
the basic idea.

If, on the other hand, you’re fully sold and want to know how to use
one of the available implementations of JSON-delta, see The JSON-delta API,
which documents the functions every implementation makes available.
This is something like a “standard” for the JSON-delta “API” (I’ll
consider that the software has outgrown these quotes when it gets more
users than just me…) Since the Python implementation is the most
developed, if you’re thinking in terms of standards, you can consider
it the reference implementation.

Further documentation of individual implementations is also available,
along with manpages for the CLI programs json_diff(1) and json_patch(1)

Donations to support the continuing development of JSON-delta will be
gratefully received via gratipay [https://gratipay.com/phijaro],
PayPal (himself@phil-roberts.name) or
Bitcoin: 1HPJHRpVSm1Y4zrgppd2c6LysjxeabbQN4

News

	Bugfix release 1.1.3 is out. Serious bugs are addressed
in this release, so Javascript users and anyone who relies on the
upatch functionality should upgrade.

	Bugfix release 1.1.2 is out, featuring a sharper
distinction between minimal and non-minimal diffs. Non-minimal
diffs can now be called for on the command line by running
json_diff --fast.

	Bugfix release 1.1.1 is out. Javascript users and anyone who uses
udiffs should upgrade.

	The Heisenbug referred to below has been fixed, along
with a more serious bug: in v1.0 of both the Python and Javascript
implementations, more than one addition to a non-top-level
array—that is, an array nested within one or more other arrays or
objects—is not encoded properly in diffs where the minimal flag is
set to True. There was no official release of v1.0 for Python,
but for ease of reference I’m calling both the fixed versions
1.1. It is recommended that all users upgrade.

	There is a Heisenbug in the udiff part of what I’m retroactively
calling v1.0 of the python implementation: it shows up some of the
time for one test case, and then only when running python3. Due to
this and other bugfixes, I recommed upgrading to v1.1.

	v1.0 of the Javascript implementation has now
been released. For JSON-format diffs it is now every bit as capable
as the python version, and it has been extensively tested, not only
against the JSON-delta test suite, but also with JSlint [http://www.jslint.com/] and JShint [http://www.jshint.com].

Downloads

The Python implementation [https://pypi.python.org/pypi/json-delta/] (compatible with version
2.7 and later, including 3) is available from PyPI.

You can download the Javascript versions here
(full [http://phil-roberts.name/json_delta/json_delta_1.1.3.js],
minified [http://phil-roberts.name/json_delta/json_delta_1.1.3_minified.js])

(Please, for the sake of my bandwidth bills, serve your own copy
rather than hot-linking mine!)

The racket and perl implementations are alpha-quality at best. If you
want to check them out, I recommend looking at the source repo (no pun
intended): development of JSON-delta takes place against a master
repository [https://bitbucket.org/phijaro/json-delta] containing
all implementations.

Implementations

The following table summarizes the feature-completeness of the
available implementations of JSON-delta, with links to
implementation-specific notes for each:

	Language
	Patch
	Diff
	Compact
	U-patch
	U-diff

	Python (2.7 and newer)
	✓
	✓
	✓
	✓
	✓

	Javascript
	✓
	✓
	✓
	✗
	✗

	Racket
	✓
	✓
	✗
	✗
	✗

The features described are as follows:

	Patch

	The implementation can manipulate data structures according to
a diff in the format specified above.

	Diff

	The implementation can calculate deltas between two data
structures in the format specified above.

	Compact

	Diffs produced by the implementation are as small as I can
possibly make them, using a variant of Needleman-Wunsch sequence
alignment to optimize stanzas modifying JSON arrays.

	U-diff

	The implementation is capable of emitting diffs in a format
reminiscent of the output of diff -u, which is designed to be
more human-readable than the JSON format, to facilitate debugging.

	U-patch

	The implementation can apply U-format patches.

The beginnings of a patch implementation in Perl can
also be found in the source repo [https://bitbucket.org/phijaro/json-delta], but, because Perl
doesn’t have as ramified a type ontology as Javascript, numeric
values do not round-trip cleanly [http://search.cpan.org/~makamaka/JSON-2.53/lib/JSON.pm#MAPPING], so
work on the Perl implementation is stalled for now.

Further Reading

	JSON-delta by example

	The JSON-delta API
	Core functions

	load_and_*

	json_diff
	Synopsis

	Description

	Options

	Examples

	Implementation Notes

	json_patch
	Synopsis

	Description

	Options

	Udiff Format

	Implementation Notes

	json_cat
	Synopsis

	Description

	Examples

	Python implementation notes
	json_delta._diff

	json_delta._patch

	json_delta._udiff

	json_delta._upatch

	json_delta._util

	Javascript implementation notes

	Racket implementation notes

	Perl implementation notes

	Licenses
	Source

	This documentation

Indices and tables

	Index

	Search Page

JSON-delta by example

Consider the example JSON-LD entry for John Lennon
from http://json-ld.org/:

{
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}

Suppose we have a piece of software that updates this record to
show his date of death, like so:

{
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",

 "died": "1980-12-07",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
 }

Further suppose that we wish to communicate this update to another
piece of software whose only job is to store information about John
Lennon in JSON-LD format. (Yes, I know this is getting unlikely, but
stay with me.) If this Lennon-record-keeper accepts updates in
json-delta format, all you have to do is send the following over the
wire:

[[["died"],"1980-12-07"]]

This is a complete diff in json-delta format. It is itself a
JSON-serializable data structure: specifically, it is a sequence of
what I refer to as diff stanzas for some reason. The
format for a diff stanza is [<key path>, (<update>)] (The
parentheses mean that the <update> part is optional. I’ll get
to that in a minute). A key path is a sequence of keys specifying
where in the data structure the node you want to alter is found, much
like those emitted by JSON.sh [https://github.com/dominictarr/JSON.sh]. The stanza may be thought of as an
instruction to update the node found at that path so that its content
is equal to <update>.

Now, let’s do some more supposing. Suppose the software we’re
communicating with is dedicated to storing information about the
Beatles in general. Also, suppose we’ve remembered that it was
actually on the 8th of December 1980 that John Lennon died, not the
7th. Finally, suppose we live in an Orwellian dystopia, and Cynthia
Lennon has been declared a non-person who must be expunged from all
records. Unfortunately, json-delta is incapable of overthrowing
corrupt and despotic governments, so let’s make one last supposition,
that what we’re interested in is updating the record kept by the
software on the other end of the wire, which looks like this:

[
 {
 "@context": "http://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",

 "died": "1980-12-07",

 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
 },
 {"name": "Paul McCartney"},
 {"name": "George Harrison"},
 {"name": "Ringo Starr"}
]

(Allegations of bias in favor of specific Beatles on the part of the
maintainer of this record are punished by the aforementioned despotic
government. All glory to Arstotzka! [http://papersplea.se/])

To make the changes we’ve decided on (correcting John’s date of death,
and expunging Cynthia Lennon from the record), we need to send the
following sequence:

[
 [[0, "died"], "1980-12-08"],
 [[0, "spouse"]]
]

Now, of course, you see what I meant when I said I’d tell you why
<update> is optional later. If a stanza includes no update material,
it is interpreted as an instruction to delete the node the key-path
points to.

Note also that there is no difference between a stanza that adds a
node, and one that changes one.

The intention is to save as much communications bandwidth as possible
without sacrificing the ability to communicate arbitrary modifications
to the data structure (this format can be used to describe a change
from any JSON-serialized object into any other). The worst-case
scenario, where there is no commonality between the two structures, is
that the protocol adds seven octets of overhead, because a diff can
always be expressed as [[[],<target>]], meaning “substitute
<target> for the data structure that is to be modified”.

The JSON-delta API

This document is intended to describe the behaviour of the main entry
points for every implementation of JSON-delta. For now, it
effectively documents the top-level namespace of the Python
implementation, as that is the most fully-developed
implementation in the suite.

Core functions

	
json_delta.diff(left_struc, right_struc, minimal=None, verbose=True, key=None, array_align=True, compare_lengths=True, common_key_threshold=0.0)

	Compose a sequence of diff stanzas sufficient to convert the
structure left_struc into the structure right_struc. (The
goal is to add ‘necessary and’ to ‘sufficient’ above!).

	Optional parameters:

	verbose: Print compression statistics to
stderr, and warn if the setting of minimal contradicts the
other parms.

array_align: Use _diff.needle_diff() to compute
deltas between arrays. Relatively computationally expensive,
but likely to produce shorter diffs. Defaults to True.

compare_lengths: If [[key, right_struc]] can be
encoded as a shorter JSON-string, return it instead of
examining the internal structure of left_struc and
right_struc. It involves calling json.dumps() [https://docs.python.org/2/library/json.html#json.dumps]
twice for every node in the structure, but may result in
smaller diffs. Defaults to True.

common_key_threshold: Skip recursion into left_struc and
right_struc if the fraction of keys they have in common
(with the same value) is less than this parm (which should be a
float between 0.0 and 1.0). Defaults to 0.0.

minimal: Included for backwards compatibility. True is
equivalent to (array_align=True, compare_lengths=True,
common_key_threshold=0.0); False is equivalent to
(array_align=False, compare_lengths=False,
common_key_threshold=0.5). Specific settings of
array_align, compare_lengths or common_key_threshold
will supersede this parm, warning on stderr if verbose and
minimal are both set.

key: Also included for backwards compatibility. If set,
will be prepended to the key in each stanza of the output.

The parameter key is present because this function is mutually
recursive with _diff.needle_diff() and _diff.keyset_diff().
If set to a list, it will be prefixed to every keypath in the
output.

	
json_delta.patch(struc, diff, in_place=True)

	Apply the sequence of diff stanzas diff to the structure
struc.

By default, this function modifies struc in place; set
in_place to False to return a patched copy of struc
instead:

>>> will_change = [16]
>>> wont_change = [16]
>>> patch(will_change, [[[0]]])
[]
>>> will_change
[]
>>> patch(wont_change, [[[0]]], False)
[]
>>> wont_change
[16]

	
json_delta.udiff(left, right, patch=None, indent=0, use_ellipses=True, entry=True)

	Render the difference between the structures left and
right as a string in a fashion inspired by diff -u.

Generating a udiff is strictly slower than generating a normal
diff with the same option parameters, since the udiff is computed
on the basis of a normal diff between left and right. If
such a diff has already been computed (e.g. by calling
diff()), pass it as the patch parameter:

>>> (next(udiff({"foo": None}, {"foo": None}, patch=[])) ==
... ' {...}')
True

As you can see above, structures that are identical in left and
right are abbreviated using '...' by default. To disable
this behavior, set use_ellipses to False.

>>> ('\n'.join(udiff({"foo": None}, {"foo": None},
... patch=[], use_ellipses=False)) ==
... """ {
... "foo":
... null
... }""")
True

>>> ('\n'.join(udiff([None, None, None], [None, None, None],
... patch=[], use_ellipses=False)) ==
... """ [
... null,
... null,
... null
...]""")
True

	
json_delta.upatch(struc, udiff, reverse=False, in_place=True)

	Apply a patch as output by json_delta.udiff() to struc.

As with json_delta.patch(), struc is modified in place by
default. Set the parm in_place to False if this is not the
desired behaviour.

The udiff format has enough information in it that this
transformation can be applied in reverse: i.e. if udiff is the
output of udiff(left, right), you can reconstruct right
given left and udiff (by running upatch(left, udiff)),
or you can also reconstruct left given right and udiff (by
running upatch(right, udiff, reverse=True)). This is not
possible for JSON-format diffs, since a [keypath] stanza
(meaning “delete the structure at keypath”) does not record what
the deleted structure was.

load_and_*

For convenience when handling input that is already JSON-serialized,
implementations should offer entry points named load_and_{FUNC},
which deserialize their input and then apply {FUNC} to it.

	
json_delta.load_and_diff(left=None, right=None, both=None, array_align=None, compare_lengths=None, common_key_threshold=None, minimal=None, verbose=True)

	Apply diff() to strings or files representing
JSON-serialized structures.

Specify either left and right, or both, like so:

>>> (load_and_diff('{"foo":"bar"}', '{"foo":"baz"}', verbose=False)
... == [[["foo"],"baz"]])
True
>>> (load_and_diff(both='[{"foo":"bar"},{"foo":"baz"}]', verbose=False)
... == [[["foo"],"baz"]])
True

left, right and both may be either strings (instances
of basestring in 2.7) or file-like objects.

minimal and verbose are passed through to diff(),
which see.

A call to this function with string arguments is strictly
equivalent to calling diff(json.loads(left), json.loads(right),
minimal=minimal, verbose=verbose) or diff(*json.loads(both),
minimal=minimal, verbose=verbose), as appropriate.

	
json_delta.load_and_patch(struc=None, stanzas=None, both=None)

	Apply patch() to strings or files representing
JSON-serialized structures.

Specify either struc and stanzas, or both, like so:

>>> (load_and_patch('{"foo":"bar"}', '[[["foo"],"baz"]]') ==
... {"foo": "baz"})
True
>>> (load_and_patch(both='[{"foo":"bar"},[[["foo"],"baz"]]]') ==
... {"foo": "baz"})
True

struc, stanzas and both may be either strings (instances
of basestring in 2.7) or file-like objects.

A call to this function with string arguments is strictly
equivalent to calling patch(json.loads(struc), json.loads(stanzas),
in_place=in_place) or patch(*json.loads(both),
in_place=in_place), as appropriate.

	
json_delta.load_and_udiff(left=None, right=None, both=None, stanzas=None, indent=0)

	Apply udiff() to strings representing JSON-serialized
structures.

Specify either left and right, or both, like so:

>>> udiff = """ {
... "foo":
... - "bar"
... + "baz"
... }"""
>>> test = load_and_udiff('{"foo":"bar"}', '{"foo":"baz"}')
>>> '\n'.join(test) == udiff
True
>>> test = load_and_udiff(both='[{"foo":"bar"},{"foo":"baz"}]')
>>> '\n'.join(test) == udiff
True

left, right and both may be either strings (instances
of basestring in 2.7) or file-like objects.

stanzas and indent are passed through to udiff(),
which see.

A call to this function with string arguments is strictly
equivalent to calling udiff(json.loads(left), json.loads(right),
stanzas=stanzas, indent=indent) or udiff(*json.loads(both),
stanzas=stanzas, indent=indent), as appropriate.

	
json_delta.load_and_upatch(struc=None, json_udiff=None, both=None, reverse=False)

	Apply upatch() to strings representing JSON-serialized
structures.

Specify either struc and json_udiff, or both, like so:

>>> struc = '{"foo":"bar"}'
>>> json_udiff = r'" {\n \"foo\":\n- \"bar\"\n+ \"baz\"\n }"'
>>> both = r'[{"foo":"baz"}," '\
... r'{\n \"foo\":\n- \"bar\"\n+ \"baz\"\n }"]'
>>> load_and_upatch(struc, json_udiff) == {"foo": "baz"}
True
>>> load_and_upatch(both=both, reverse=True) == {"foo": "bar"}
True

struc, json_udiff and both may be either strings
(instances of basestring in 2.7) or file-like objects. Note
that json_udiff is so named because it must be a
JSON-serialized representation of the udiff string, not the udiff
string itself.

reverse is passed through to upatch(), which see.

A call to this function with string arguments is strictly
equivalent to calling upatch(json.loads(struc),
json.loads(json_udiff), reverse=reverse, in_place=in_place) or
upatch(*json.loads(both), reverse=reverse, in_place=in_place),
as appropriate.

json_diff

Synopsis

json_diff [--output FILE] [--verbose] [--unified] [left] [right]
json_diff [--version]
json_diff [--help]

Description

json_diff produces deltas between JSON-serialized data structures.
If no arguments are specified, stdin will be expected to be a JSON
array [left, right], and the output will be written to stdout.

The default output is itself a JSON data structure, specifically an
array of arrays of the form [<keypath>] or [<keypath>,
<replacement>]. The companion program json_patch(1) can
be used to apply such a diff.

A keypath is an array of string or integer tokens specifying a
path to a terminal node in the data structure. For example, in the
structure [{}, {"foo": "bar"}], the string "bar" appears at
the node addressed by the key sequence [1, 'foo'], and the empty
object {} appears at key sequence [0].

If a diff stanza is an array of length 1, consisting only of a key
sequence, json_patch(1) interprets it as an instruction to
delete the node the key sequence points to. If a stanza is of length
2, the node is replaced by the last element of the stanza.

An alternative output format for json_diff is accessed using the
--unified / -u [https://docs.python.org/2/using/cmdline.html#cmdoption-u] option. This is designed to be
more legible to the human eye, inspired by unified diffs as output by
diff(1). json_patch(1) can read
either format, and, since there is enough information in the format,
can apply --unified patches in reverse.

json_diff will accept input in any of the encodings specified in RFC
7159, namely UTF-8, -16 or -32, with or without byte-order marks. The
default encoding for output is UTF-8 with no BOM, but this can be
changed using the --encoding option.

Options

	
--output FILE, -o FILE

	 	Write output to FILE instead of stdout.

	
--unified, -u
	Write diffs in a more legible format,
inspired by the output of diff -u

	
--encoding ENCODING

	 	Select the encoding for the output.

	
--verbose
	Print compression statistics on stderr.

	
--version
	Show the program’s version number and exit.

	
--help, -h
	Show a brief help message and exit.

Examples

$ json_diff << 'EOF'
> [{"foo": "bar"},
> {"foo": "bar",
> "baz": ["quux"]}]
> EOF
[[["baz"],["quux"]]]

$ cat > foofile << 'EOF'
> {"foods": ["spam", "spam", "spam", "spam"],
> "weaponry": "Mainly battleaxes.",
> "spanish inquisition expected": false,
> "drinks": "Delicious mead!",
> "other supplies": null}
> EOF
$ cat > barfile << 'EOF'
> {"foods": ["spam", "spam", "spam", "pickled eggs", "spam"],
> "weaponry": "Mainly battleaxes.",
> "spanish inquisition expected": false,
> "drinks": "Soda water."}
> EOF
$ json_diff -u foofile barfile
--- foofile 2014-04-14 21:32:00 BST
+++ barfile 2014-04-14 21:32:17 BST
 {
 "foods":
 ...
 "weaponry": "Mainly battleaxes.",
 ["spam",
 ...(2),
+ "pickled eggs",
 "spam"]

 "drinks":
- "Delicious mead!",
+ "Soda water.",

- "other supplies": null
 }

Implementation Notes

The value of the --encoding option in the Python implementation of
json_diff is fed straight to the encode() function, so it is
possible to get output in any encoding supported by the Python
implementation used to run the script. This makes various mildly
interesting things possible, like getting compressed output using
--encoding bz2 or --encoding zlib, or even --encoding
rot-13 (Furrfu!)

json_patch

Synopsis

json_patch [--output FILE] [--unified | --normal]
 [--strip [NUM]] [--reverse] [originalfile] [patchfile]
json_patch [--version]
json_patch [--help]

Description

json_patch applies diffs in the format produced by
json_diff(1) to JSON-serialized data structures.

The program attempts to mimic the interface of the patch(1)
utility as far as possible, while also remaining compatible with the
script functionality of the json_delta.py library on which it
relies. There are, therefore, at least four different ways its input
can be specified.

	The simplest, of course, is if the filenames are both specified as
positional arguments.

	Closely following in terms of simplicity, the inputs can be fed as
a JSON array [<structure>,<patch>] to standard input.

	If only one positional argument is specified, it is read as the
filename of the original data structure, and the patch is expected
to appear on stdin.

	Finally, if there are no positional arguments, and stdin cannot be
parsed as JSON, it can alternatively be a udiff, as output by
json_diff -u. In this case, json_patch will read the name of
the file containing the structure to modify out of the first header
line of the udiff (the one beginning with ---).

The most salient departure from the behavior of patch(1) is
that, by default, json_patch will not modify files in place.
Instead, the patched structure is written as JSON to stdout. Frankly,
this is to save having to implement backup filename options, getting
it wrong, and having angry hackers blame me for their lost data.

However, the input structure is read into memory before the output
file handle is opened, so an in-place modification can be accomplished
by setting the option --output to point to <originalfile>.

Also, note that json_diff and json_patch can only manipulate a single
file at a time: even the output of json_diff -u is not a “unified”
diff sensu stricto.

json_patch will accept input in any of the encodings specified in
RFC 7159, namely UTF-8, -16 or -32, with or without byte-order marks.
The default encoding for output is UTF-8 with no BOM, but this can be
changed using the --encoding option.

Options

	
--output FILE, -o FILE

	 	Write output to FILE instead of stdout.

	
--unified, -u
	Force the patch to be interpreted as a udiff.

	
--normal, -n
	Force the patch to be interpreted as a normal
(i.e. JSON-format) patch

	
--reverse, -R
	Assume the patch was created with old and new
files swapped.

	
--strip NUM, -p NUM

	 	Strip NUM leading components from file names
read out of udiff headers.

	
--encoding ENCODING

	 	Select the encoding for the output.

	
--version
	Show the program’s version number and exit.

	
--help, -h
	Show a brief help message and exit.

Udiff Format

The program has strict requirements of the format of “unified” diffs.
It works by discarding header lines, then creating two strings: one by
discarding every line beginning with -, then discarding the first
character of every remaining line, and one following the same
procedure, but with lines beginning with + discarded. For
json_patch to function, these strings must be interpretable according
to the following superset of the JSON spec:

	Within objects, the string ... may appear in any context where a
"property": <object> construction would be valid JSON. This
indicates that one or more properties have been omitted from the
representation of the object.

	Within arrays, the string ... may appear as an array element.
It may optionally be followed by an integer in parentheses,
e.g. (1), (15). This indicates that that number of elements
have been omitted from the array, or that one element has, if no
parenthesized number is present.

The program reconstructs the JSON-format diff on the basis of these
strings, and then applies it to the input structure.

Implementation Notes

The value of the --encoding option in the Python implementation of
json_diff is fed straight to the encode() function, so it is
possible to get output in any encoding supported by the Python
implementation used to run the script. This makes various mildly
interesting things possible, like getting compressed output using
--encoding bz2 or --encoding zlib, or even --encoding
rot-13 (Furrfu!)

json_cat

Synopsis

json_cat [FILE]...

Description

Concatenate FILE(s), or standard input together and write them to
standard output as a JSON array.

Input streams are parsed as JSON if possible, otherwise they are added
to the array as strings.

Output is always UTF-8 encoded.

Examples

$ echo '{"foo": true, "bar": false,
> "baz": null}' > foofile
$ json_cat foofile - << 'EOF'
> This text cannot be parsed as JSON.
> EOF
[{"foo": true, "bar": false, "baz": null}, "This text cannot be parsed as JSON."]
$ echo 'You can use json_cat to create 1-element JSON arrays of text,
> if that'\''s something you like to do...' | json_cat
["You can use json_cat to create 1-element JSON arrays of text, if that's something you like to do..."]

Python implementation notes

The Python implementation of JSON-delta consists of a package
json_delta, whose top-level namespace is documented in
The JSON-delta API. The implementation is divided into five sub-modules of
the package, whose names all begin with an underscore to highlight the
fact that they are not part of the API: the way the functions
documented in The JSON-delta API are implemented is subject to refactoring
at any time. Nevertheless, the sub-modules are documented here.

json_delta._diff

Functions for computing JSON-format diffs.

	
json_delta._diff.diff(left_struc, right_struc, array_align=True, compare_lengths=True, common_key_threshold=0.0, verbose=True, key=None)

	Compose a sequence of diff stanzas sufficient to convert the
structure left_struc into the structure right_struc.
(Whether you can add ‘necessary and’ to ‘sufficient to’ depends on
the setting of the other parms, and how many cycles you want to
burn; see below).

	Optional parameters:

	array_align: Use needle_diff() to compute deltas
between arrays. Computationally expensive, but likely to
produce shorter diffs. If this parm is set to the string
'udiff', needle_diff() will optimize for the
shortest udiff, instead of the shortest JSON-format diff.
Otherwise, set to any value that is true in a Boolean context
to enable.

compare_lengths: If at any level [[key, right_struc]]
can be encoded as a shorter JSON-string, return it instead of
examining the internal structure of left_struc and
right_struc. May result in smaller diffs.

common_key_threshold: Skip recursion into left_struc
and right_struc if the fraction of keys they have in
common (as computed by commonality(), which see) is less
than this parm (which should be a float between 0.0 and
1.0).

verbose: Print compression statistics to stderr.

The parameter key is present because this function is mutually
recursive with needle_diff() and keyset_diff().
If set to a list, it will be prefixed to every keypath in the
output.

	
json_delta._diff.append_key(stanzas, left_struc, keypath=())

	Get the appropriate key for appending to the sequence left_struc.

stanzas should be a diff, some of whose stanzas may modify a
sequence left_struc that appears at path keypath. If any of
the stanzas append to left_struc, the return value is the
largest index in left_struc they address, plus one.
Otherwise, the return value is len(left_struc) (i.e. the index
that a value would have if it was appended to left_struc).

>>> append_key([], [])
0
>>> append_key([[[2], 'Baz']], ['Foo', 'Bar'])
3
>>> append_key([[[2], 'Baz'], [['Quux', 0], 'Foo']], [], ['Quux'])
1

	
json_delta._diff.commonality(left_struc, right_struc)

	Return a float between 0.0 and 1.0 representing the amount
that the structures left_struc and right_struc have in
common.

Return value is computed as the fraction (elements in common) /
(total elements).

	
json_delta._diff.compute_diff_stats(target, diff, percent=True)

	Calculate the size of a minimal JSON dump of target and diff,
and the ratio of the two sizes.

The ratio is expressed as a percentage if percent is True in
a Boolean context, or as a float otherwise.

Return value is a tuple of the form
({ratio}, {size of target}, {size of diff})

>>> compute_diff_stats([{}, 'foo', 'bar'], [], False)
(0.125, 16, 2)
>>> compute_diff_stats([{}, 'foo', 'bar'], [[0], {}])
(50.0, 16, 8)

	
json_delta._diff.compute_keysets(left_seq, right_seq)

	Compare the keys of left_seq vs. right_seq.

Determines which keys left_seq and right_seq have in
common, and which are unique to each of the structures. Arguments
should be instances of the same basic type, which must be a
non-terminal: i.e. list or dict [https://docs.python.org/2/library/stdtypes.html#dict]. If they are
lists, the keys compared will be integer indices.

	Returns:

	Return value is a 3-tuple of sets ({overlap}, {left_only},
{right_only}). As their names suggest, overlap is a set
of keys left_seq have in common, left_only represents
keys only found in left_seq, and right_only holds keys
only found in right_seq.

	Raises:

	AssertionError if left_seq is not an instance of
type(right_seq), or if they are not of a non-terminal
type.

>>> (compute_keysets({'foo': None}, {'bar': None})
... == (set([]), {'foo'}, {'bar'}))
True
>>> (compute_keysets({'foo': None, 'baz': None},
... {'bar': None, 'baz': None})
... == ({'baz'}, {'foo'}, {'bar'}))
True
>>> (compute_keysets(['foo', 'baz'], ['bar', 'baz'])
... == ({0, 1}, set([]), set([])))
True
>>> compute_keysets(['foo'], ['bar', 'baz']) == ({0}, set([]), {1})
True
>>> compute_keysets([], ['bar', 'baz']) == (set([]), set([]), {0, 1})
True

	
json_delta._diff.diff(left_struc, right_struc, array_align=True, compare_lengths=True, common_key_threshold=0.0, verbose=True, key=None)

	Compose a sequence of diff stanzas sufficient to convert the
structure left_struc into the structure right_struc.
(Whether you can add ‘necessary and’ to ‘sufficient to’ depends on
the setting of the other parms, and how many cycles you want to
burn; see below).

	Optional parameters:

	array_align: Use needle_diff() to compute deltas
between arrays. Computationally expensive, but likely to
produce shorter diffs. If this parm is set to the string
'udiff', needle_diff() will optimize for the
shortest udiff, instead of the shortest JSON-format diff.
Otherwise, set to any value that is true in a Boolean context
to enable.

compare_lengths: If at any level [[key, right_struc]]
can be encoded as a shorter JSON-string, return it instead of
examining the internal structure of left_struc and
right_struc. May result in smaller diffs.

common_key_threshold: Skip recursion into left_struc
and right_struc if the fraction of keys they have in
common (as computed by commonality(), which see) is less
than this parm (which should be a float between 0.0 and
1.0).

verbose: Print compression statistics to stderr.

The parameter key is present because this function is mutually
recursive with needle_diff() and keyset_diff().
If set to a list, it will be prefixed to every keypath in the
output.

	
json_delta._diff.sort_stanzas(stanzas)

	Sort the stanzas in a diff.

Object changes can occur in any order, but deletions from arrays
have to happen last node first: ['foo', 'bar', 'baz'] →
['foo', 'bar'] → ['foo'] → []; additions to arrays
have to happen leftmost-node-first: [] → ['foo'] →
['foo', 'bar'] → ['foo', 'bar', 'baz'], and
insert-and-shift alterations to arrays must happen last: ['foo',
'quux'] → ['foo', 'bar', 'quux'] → ['foo', 'bar', 'baz',
'quux'].

Finally, stanzas are sorted in descending order of length of
keypath, so that the most deeply-nested structures are altered
before alterations which might change their keypaths take place.

Note that this will also sort changes to objects (dicts)
so that they occur first of all.

	
json_delta._diff.split_diff(stanzas)

	Split a diff into modifications, deletions and insertions.

Return value is a 4-tuple of lists: the first is a list of stanzas
from stanzas that modify JSON objects, the second is a list of
stanzas that add or change elements in JSON arrays, the third is a
list of stanzas which delete elements from arrays, and the fourth is
a list of stanzas which insert elements into arrays (stanzas ending
in "i").

	
json_delta._diff.structure_comparable(left_struc, right_struc)

	Test if left_struc and right_struc can be efficiently diffed.

	
json_delta._diff.this_level_diff(left_struc, right_struc, key=None, common=None)

	Return a sequence of diff stanzas between the structures
left_struc and right_struc, assuming that they are each at
the key-path key within the overall structure.

>>> (this_level_diff({'foo': 'bar', 'baz': 'quux'},
... {'foo': 'bar'})
... == [[['baz']]])
True
>>> (this_level_diff({'foo': 'bar', 'baz': 'quux'},
... {'foo': 'bar'}, ['quordle'])
... == [[['quordle', 'baz']]])
True

json_delta._patch

Functions for applying JSON-format patches.

	
json_delta._patch.patch(struc, diff, in_place=True)

	Apply the sequence of diff stanzas diff to the structure
struc.

By default, this function modifies struc in place; set
in_place to False to return a patched copy of struc
instead:

>>> will_change = [16]
>>> wont_change = [16]
>>> patch(will_change, [[[0]]])
[]
>>> will_change
[]
>>> patch(wont_change, [[[0]]], False)
[]
>>> wont_change
[16]

	
json_delta._patch.patch(struc, diff, in_place=True)

	Apply the sequence of diff stanzas diff to the structure
struc.

By default, this function modifies struc in place; set
in_place to False to return a patched copy of struc
instead:

>>> will_change = [16]
>>> wont_change = [16]
>>> patch(will_change, [[[0]]])
[]
>>> will_change
[]
>>> patch(wont_change, [[[0]]], False)
[]
>>> wont_change
[16]

	
json_delta._patch.patch_stanza(struc, stanza)

	Applies the stanza stanza to the structure struc as
a patch.

Note that this function modifies struc in-place into the
target of stanza. If struc is a tuple() [https://docs.python.org/2/library/functions.html#tuple], you get a
new tuple with the appropriate modification made:

>>> patch_stanza((17, 3.141593, None), [[1], 3.14159265])
(17, 3.14159265, None)

json_delta._udiff

Functions for computing udiffs. Main entry point: udiff().

The data structure representing a udiff that these functions all
manipulate is a pair of lists of iterators (left_lines,
right_lines). These lists are expected (principally by
generate_udiff_lines(), which processes them), to be of the
same length. A pair of iterators (left_lines[i], right_lines[i])
may yield exactly the same sequence of output lines, each with ' '
as the first character (representing parts of the structure the input
and output have in common). Alternatively, they may each yield zero
or more lines (referring to parts of the structure that are unique to
the inputs they represent). In this case, all lines yielded by
left_lines[i] should begin with '-', and all lines yielded by
right_lines[i] should begin with '+'.

	
json_delta._udiff.udiff(left, right, patch=None, indent=0, use_ellipses=True, entry=True)

	Render the difference between the structures left and
right as a string in a fashion inspired by diff -u.

Generating a udiff is strictly slower than generating a normal
diff with the same option parameters, since the udiff is computed
on the basis of a normal diff between left and right. If
such a diff has already been computed (e.g. by calling
diff()), pass it as the patch parameter:

>>> (next(udiff({"foo": None}, {"foo": None}, patch=[])) ==
... ' {...}')
True

As you can see above, structures that are identical in left and
right are abbreviated using '...' by default. To disable
this behavior, set use_ellipses to False.

>>> ('\n'.join(udiff({"foo": None}, {"foo": None},
... patch=[], use_ellipses=False)) ==
... """ {
... "foo":
... null
... }""")
True

>>> ('\n'.join(udiff([None, None, None], [None, None, None],
... patch=[], use_ellipses=False)) ==
... """ [
... null,
... null,
... null
...]""")
True

	
class json_delta._udiff.Gap

	Class to represent gaps introduced by sequence alignment.

	
json_delta._udiff.add_matter(seq, matter, indent)

	Add material to seq, treating it appropriately for its
type.

matter may be an iterator, in which case it is appended to
seq. If it is a sequence, it is assumed to be a sequence of
iterators, the sequence is concatenated onto seq. If
matter is a string, it is turned into a patch band using
single_patch_band(), which is appended. Finally, if
matter is None, an empty iterable is appended to seq.

This function is a udiff-forming primitive, called by more
specific functions defined within udiff_dict() and
udiff_list().

	
json_delta._udiff.commafy(gen, comma=True)

	Yield from gen, ensuring that the final result ends with
a comma iff comma is True.

>>> gen = ['Example line']
>>> next(commafy(iter(gen))) == 'Example line,'
True
>>> next(commafy(iter(gen), False)) == 'Example line'
True
>>> gen = ['Line with a comma at the end,']
>>> (next(commafy(iter(gen), comma=True))
... == next(commafy(iter(gen), comma=False))
... == 'Line with a comma at the end,')
True

	
json_delta._udiff.curry_functions(local_ns)

	Create partials of _add_common_matter(),
_add_differing_matter() and _commafy_last(), with
values for left_lines, right_lines and (where appropriate)
indent taken from the dictionary local_ns.

Appropriate defaults are also included in the partials, namely
left=None and right=None for _add_differing_matter()
and left_comma=True and right_comma=None for
_commafy_last().

	
json_delta._udiff.generate_udiff_lines(left, right)

	Combine the diff lines from left and right, and
generate the lines of the resulting udiff.

	
json_delta._udiff.patch_bands(indent, material, sigil=u' ')

	Generate appropriately indented patch bands, with sigil as
the first character.

	
json_delta._udiff.reconstruct_alignment(left, right, stanzas)

	Reconstruct the sequence alignment between the lists left
and right implied by stanzas.

	
json_delta._udiff.single_patch_band(indent, line, sigil=u' ')

	Convenience function returning an iterable that generates a
single patch band.

	
json_delta._udiff.udiff(left, right, patch=None, indent=0, use_ellipses=True, entry=True)

	Render the difference between the structures left and
right as a string in a fashion inspired by diff -u.

Generating a udiff is strictly slower than generating a normal
diff with the same option parameters, since the udiff is computed
on the basis of a normal diff between left and right. If
such a diff has already been computed (e.g. by calling
diff()), pass it as the patch parameter:

>>> (next(udiff({"foo": None}, {"foo": None}, patch=[])) ==
... ' {...}')
True

As you can see above, structures that are identical in left and
right are abbreviated using '...' by default. To disable
this behavior, set use_ellipses to False.

>>> ('\n'.join(udiff({"foo": None}, {"foo": None},
... patch=[], use_ellipses=False)) ==
... """ {
... "foo":
... null
... }""")
True

>>> ('\n'.join(udiff([None, None, None], [None, None, None],
... patch=[], use_ellipses=False)) ==
... """ [
... null,
... null,
... null
...]""")
True

	
json_delta._udiff.udiff_dict(left, right, stanzas, indent=0, use_ellipses=True)

	Construct a human-readable delta between left and right.

This function probably shouldn’t be called directly. Instead, use
udiff() with the same arguments. udiff()
and udiff_dict() are mutually recursive, anyway.

	
json_delta._udiff.udiff_list(left, right, stanzas, indent=0, use_ellipses=True)

	Construct a human-readable delta between left and right.

This function probably shouldn’t be called directly. Instead, use
udiff() with the same arguments. udiff()
and udiff_list() are mutually recursive, anyway.

json_delta._upatch

	
json_delta._upatch.upatch(struc, udiff, reverse=False, in_place=True)

	Apply a patch as output by json_delta.udiff() to struc.

As with json_delta.patch(), struc is modified in place by
default. Set the parm in_place to False if this is not the
desired behaviour.

The udiff format has enough information in it that this
transformation can be applied in reverse: i.e. if udiff is the
output of udiff(left, right), you can reconstruct right
given left and udiff (by running upatch(left, udiff)),
or you can also reconstruct left given right and udiff (by
running upatch(right, udiff, reverse=True)). This is not
possible for JSON-format diffs, since a [keypath] stanza
(meaning “delete the structure at keypath”) does not record what
the deleted structure was.

	
json_delta._upatch.ellipsis_handler(jstring, point, key)

	Extends key_tracker() to handle the … construction.

	
json_delta._upatch.is_none_key(key)

	Is the last element of key None?

	
json_delta._upatch.reconstruct_diff(udiff, reverse=False)

	Turn a udiff back into a JSON-format diff.

Set reverse to True to generate a reverse diff (i.e. swap
the significance of line-initial + and -).

Header lines (if present) are ignored:

>>> udiff = """--- <stdin>
... +++ <stdin>
... -false
... +true"""
>>> reconstruct_diff(udiff)
[[[], True]]
>>> reconstruct_diff(udiff, reverse=True)
[[[], False]]

	
json_delta._upatch.skip_key(point, key, origin, keys, predicate)

	Find the next result in keys for which predicate(key) is False.

If none is found, or if key is already such a result, the
return value is (point, key).

	
json_delta._upatch.sort_stanzas(stanzas)

	Sorts the stanzas in a diff.

reconstruct_diff() works on different assumptions from
json_delta._diff.needle_diff() when it comes to stanzas
altering arrays: keys in such stanzas relate to the element’s
position within the array’s longest intermediate representation
during the transformation (that is after all insert-and-shifts,
after all appends, but before any deletions). This function sorts
stanzas to reflect that order of operations.

As with json_delta._diff.sort_stanzas() (which see), stanzas
are sorted for length so the most deeply-nested structures get
their modifications first.

	
json_delta._upatch.udiff_key_tracker(udiff, point=0, start_key=None)

	Find points within the udiff where the active keypath changes.

	
json_delta._upatch.upatch(struc, udiff, reverse=False, in_place=True)

	Apply a patch as output by json_delta.udiff() to struc.

As with json_delta.patch(), struc is modified in place by
default. Set the parm in_place to False if this is not the
desired behaviour.

The udiff format has enough information in it that this
transformation can be applied in reverse: i.e. if udiff is the
output of udiff(left, right), you can reconstruct right
given left and udiff (by running upatch(left, udiff)),
or you can also reconstruct left given right and udiff (by
running upatch(right, udiff, reverse=True)). This is not
possible for JSON-format diffs, since a [keypath] stanza
(meaning “delete the structure at keypath”) does not record what
the deleted structure was.

json_delta._util

Utility functions and constants used by more than one submodule.

The majority of python 2/3 compatibility shims also appear in this
module.

	
json_delta._util.predicate_count(iterable, predicate=lambda x: True)

	Count items x in iterable such that predicate(x).

The default predicate is lambda x: True, so
predicate_count(iterable) will count the values generated by
iterable. Note that if the iterable is a generator, this
function will exhaust it, and if it is an infinite generator, this
function will never return!

>>> predicate_count([True] * 16)
16
>>> predicate_count([True, True, False, True, True], lambda x: x)
4

	
json_delta._util.uniquify(bytestring, key=lambda x: x)

	Remove duplicate elements from a list while preserving order.

key works as for min() [https://docs.python.org/2/library/functions.html#min], max() [https://docs.python.org/2/library/functions.html#max], etc. in the
standard library.

	
json_delta._util.sniff_encoding(bytestring, starts=JSON_STARTS, complete=True)

	Determine the encoding of a UTF-x encoded string.

The argument starts must be a mapping of bytestrings the input
can begin with onto the encoding that such a beginning would
represent (see licit_starts() for a function that can build
such a mapping).

The complete flag signifies whether the input represents the
entire string: if it is set False, the function will attempt
to determine the encoding, but will raise a UnicodeError if it
is ambiguous. For example, an input of b'\xff\xfe' could be
the UTF-16 little-endian byte-order mark, or, if the input is
incomplete, it could be the first two characters of the UTF-32-LE
BOM:

>>> sniff_encoding(b'\xff\xfe') == 'utf_16'
True
>>> sniff_encoding(b'\xff\xfe', complete=False)
Traceback (most recent call last):
 ...
UnicodeError: String encoding is ambiguous.

	
json_delta._util._load_and_func(func, parm1=None, parm2=None, both=None, **flags)

	Decode JSON-serialized parameters and apply func to them.

	
json_delta._util.all_paths(struc)

	Generate key-paths to every node in struc.

Both terminal and non-terminal nodes are visited, like so:

>>> paths = [x for x in all_paths({'foo': None, 'bar': ['baz', 'quux']})]
>>> [] in paths # ([] is the path to ``struc`` itself.)
True
>>> ['foo'] in paths
True
>>> ['bar'] in paths
True
>>> ['bar', 0] in paths
True
>>> ['bar', 1] in paths
True
>>> len(paths)
5

	
json_delta._util.check_diff_structure(diff)

	Return diff (or True) if it is structured as a sequence
of diff stanzas. Otherwise return False.

[] is a valid diff, so if it is passed to this function, the
return value is True, so that the return value is always true
in a Boolean context if diff is valid.

>>> check_diff_structure('This is certainly not a diff!')
False
>>> check_diff_structure([])
True
>>> check_diff_structure([None])
False
>>> example_valid_diff = [[["foo", 6, 12815316313, "bar"], None]]
>>> check_diff_structure(example_valid_diff) == example_valid_diff
True
>>> check_diff_structure([[["foo", 6, 12815316313, "bar"], None],
... [["foo", False], True]])
False

	
json_delta._util.compact_json_dumps(obj)

	Compute the most compact possible JSON representation of obj.

>>> test = {
... 'foo': 'bar',
... 'baz':
... ['quux', 'spam',
... 'eggs']
... }
>>> compact_json_dumps(test) in (
... '{"foo":"bar","baz":["quux","spam","eggs"]}',
... '{"baz":["quux","spam","eggs"],"foo":"bar"}'
...)
True
>>>

	
json_delta._util.decode_json(file_or_str)

	Decode a JSON file-like object or string.

The following doctest is probably pointless as documentation. It is
here so json-delta can claim 100% code coverage for its test suite!

>>> try:
... from StringIO import StringIO
... except ImportError:
... from io import StringIO
>>> foo = '[]'
>>> decode_json(foo)
[]
>>> decode_json(StringIO(foo))
[]

	
json_delta._util.decode_udiff(file_or_str)

	Decode a file-like object or bytestring udiff into a unicode string.

The udiff may be encoded in UTF-8, -16 or -32 (with or without BOM):

>>> udiff = u'- true\n+ false'
>>> decode_udiff(udiff.encode('utf_32_be')) == udiff
True
>>> try:
... from StringIO import StringIO
... except ImportError:
... from io import BytesIO as StringIO
>>> decode_udiff(StringIO(udiff.encode('utf-8-sig'))) == udiff
True

An empty string is a valid udiff; this function will convert it to
a unicode string:

>>> decode_udiff(b'') == u''
True

The function is idempotent: if you pass it a unicode string, it
will be returned unmodified:

>>> decode_udiff(udiff) is udiff
True

If you pass it a non-empty bytestring that cannot be interpreted
as beginning with ' ', '+', '-' or a BOM in any
encoding, a ValueError is raised:

>>> decode_udiff(b':-)')
Traceback (most recent call last):
 ...
ValueError: String does not begin with any of the specified start chars.

	
json_delta._util.follow_path(struc, path)

	Retrieve the value found at the key-path path within struc.

	
json_delta._util.in_array(key, accept_None=False)

	Should the keypath key point at a JSON array ([])?

Works by testing whether key[-1] is an int [https://docs.python.org/2/library/functions.html#int] or
(where appropriate) long [https://docs.python.org/2/library/functions.html#long]:

>>> in_array([u'bar', 16])
True
>>> import sys
>>> sys.version >= '3' or eval("in_array([u'foo', 94L])")
True

Returns False if key addresses a non-array object…

>>> in_array(["foo"])
False
>>> in_array([u'bar'])
False

…or if key == [] (as in that case there’s no way of knowing
whether key addresses an object or an array).

>>> in_array([])
False

If the accept_None flag is set, this function will not raise a
ValueError if key[-1] is None (keypaths of this form are
used by key_tracker(), to signal points within a JSON string
where a new object key is expected, but not yet found).

>>> in_array([None])
Traceback (most recent call last):
 ...
ValueError: keypath elements must be instances of str, unicode, int or long,
 not NoneType (key[0] == None)

>>> in_array([None], True)
False
>>> in_array([None], accept_None=True)
False

Otherwise, a ValueError is raised if key is not a valid keypath:

>>> keypath = [{str("spam"): str("spam")}, "pickled eggs and spam", 7]
>>> in_array(keypath)
Traceback (most recent call last):
 ...
ValueError: keypath elements must be instances of str, unicode, int or long,
 not dict (key[0] == {'spam': 'spam'})

	
json_delta._util.in_object(key, accept_None=False)

	Should the keypath key point at a JSON object ({})?

Works by testing whether key[-1] is a string or (where appropriate)
unicode() [https://docs.python.org/2/library/functions.html#unicode]:

>>> in_object(["foo"])
True
>>> in_object([u'bar'])
True

Returns False if key addresses an array…

>>> in_object([u'bar', 16])
False
>>> import sys
>>> False if sys.version >= '3' else eval("in_object([u'bar', 16L])")
False

…if key == []…

>>> in_object([])
False

If the accept_None flag is set, this function will also return
True if key[-1] is None (this functionality is used by
key_tracker(), to signal points within a JSON string where a
new object key is expected, but not yet found).

>>> in_object([None])
Traceback (most recent call last):
 ...
ValueError: keypath elements must be instances of str, unicode, int or long,
 not NoneType (key[0] == None)

>>> in_object([None], True)
True
>>> in_object([None], accept_None=True)
True

Raises a ValueError if key is not a valid keypath:

>>> in_object(['foo', {}])
Traceback (most recent call last):
 ...
ValueError: keypath elements must be instances of str, unicode, int or long,
 not dict (key[1] == {})

>>> in_object([False, u'foo'])
Traceback (most recent call last):
 ...
ValueError: keypath elements must be instances of str, unicode, int or long,
 not bool (key[0] == False)

	
json_delta._util.in_x_error(key, offender)

	Build the instance of ValueError in_object() and
in_array() raise if keypath is invalid.

	
json_delta._util.json_bytestring_length(string)

	Find the length of the JSON for a string without actually encoding it.

Attempts to give the shortest possible version: encoding as UTF-8 and
using escape sequences only where necessary.

	
json_delta._util.json_length(obj)

	Find the length of the JSON for obj without actually encoding it.

	
json_delta._util.key_tracker(jstring, point=0, start_key=None, special_handler=None)

	Generate points within jstring where the keypath changes.

This function also identifies points within objects where a new
key: value pair is expected, by yielding a pseudo-keypath with
None as the final element.

	Parameters:

	
	jstring: The JSON string to search.

	point: The point to start at.

	start_key: The starting keypath.

	special_handler: A function for handling extensions to
JSON syntax (e.g. _upatch.ellipsis_handler(), used
to handle the ... construction in udiffs).

>>> next(key_tracker('{}'))
(1, (None,))

	
json_delta._util.keypath_lengths(keypaths)

	Build a dict of lengths of (hashable!) keypaths from a structure.

keypaths must be a list of all keypaths within a single
structure, e.g. as returned by all_paths().

	
json_delta._util.licit_starts(start_chars=u'{}[]"-0123456789tfn \t\n\r')

	Compute the bytestrings a UTF-x encoded string can begin with.

This function is intended for encoding detection when the
beginning of the encoded string must be one of a limited set of
characters, as for JSON or the udiff format. The argument
start_chars must be an iterable of valid beginnings.

	
json_delta._util.nearest_of(string, *subs)

	Find the index of the substring in subs that occurs earliest in
string, or len(string) if none of them do.

	
json_delta._util.predicate_count(iterable, predicate=<function <lambda>>)

	Count items x in iterable such that predicate(x).

The default predicate is lambda x: True, so
predicate_count(iterable) will count the values generated by
iterable. Note that if the iterable is a generator, this
function will exhaust it, and if it is an infinite generator, this
function will never return!

>>> predicate_count([True] * 16)
16
>>> predicate_count([True, True, False, True, True], lambda x: x)
4

	
json_delta._util.read_bytestring(file)

	Read the contents of file as a bytes object.

	
json_delta._util.skip_string(jstring, point)

	Assuming jstring is a string, and jstring[point] is a " that
starts a JSON string, return x such that jstring[x-1] is
the " that terminates the string.

When a " is found, it is necessary to check that it is not
escaped by a preceding backslash. As a backslash may itself be
escaped, this amounts to checking that the number of backslashes
immediately preceding the " is even (counting 0 as an even
number):

>>> test_string = r'"Fred \"Foonly\" McQuux"'
>>> skip_string(test_string, 0) == len(test_string)
True
>>> backslash = chr(0x5c)
>>> dbl_quote = chr(0x22)
>>> even_slashes = ((r'"\\\\\\"', json.dumps(backslash * 3)),
... (r'"\\\\"', json.dumps(backslash * 2)),
... (r'"\\"', json.dumps(backslash)))
>>> all((json.loads(L) == json.loads(R) for (L, R) in even_slashes))
True
>>> all((skip_string(L, 0) == len(L) for (L, R) in even_slashes))
True
>>> def cat_dump(*args): return json.dumps(''.join(args))
>>> odd_slashes = (
... (r'"\\\\\\\" "', cat_dump(backslash * 3, dbl_quote, ' ' * 2)),
... (r'"\\\\\" "', cat_dump(backslash * 2, dbl_quote, ' ' * 4)),
... (r'"\\\" "', cat_dump(backslash * 1, dbl_quote, ' ' * 6)),
... (r'"\" "', cat_dump(dbl_quote, ' ' * 8)),
...)
>>> all((json.loads(L) == json.loads(R) for (L, R) in odd_slashes))
True
>>> all((skip_string(L, 0) == 12 for (L, R) in odd_slashes))
True

	
json_delta._util.sniff_encoding(bytestring, starts={'\x00\x00\x007': u'utf_32_be', '\x00\n': u'utf_16_be', '\x00\x00\x00\r': u'utf_32_be', '\x00\t': u'utf_16_be', '\x00\x00\x00\t': u'utf_32_be', '\x00\x00\x00\n': u'utf_32_be', '\x00\r': u'utf_16_be', '"\x00\x00\x00': u'utf_32_le', '2\x00': u'utf_16_le', '\x00\x00\x00]': u'utf_32_be', '\xef\xbb\xbf': u'utf_8_sig', '\x00"': u'utf_16_be', ' ': u'utf_8', '\x00 ': u'utf_16_be', '\x00\x00\x00 ': u'utf_32_be', '\x00\x00\x00"': u'utf_32_be', '\x00\x00\x00-': u'utf_32_be', '\x00-': u'utf_16_be', '\x002': u'utf_16_be', '0': u'utf_8', '\x000': u'utf_16_be', '\x001': u'utf_16_be', '\x006': u'utf_16_be', '4': u'utf_8', '\x004': u'utf_16_be', '\x005': u'utf_16_be', '8': u'utf_8', '\x008': u'utf_16_be', '\xff\xfe\x00\x00': u'utf_32', '\x00\x00\x008': u'utf_32_be', '\x00\x00\x001': u'utf_32_be', ']\x00\x00\x00': u'utf_32_le', '-\x00': u'utf_16_le', 'f\x00\x00\x00': u'utf_32_le', '\x00\x00\x00f': u'utf_32_be', '\x00[': u'utf_16_be', '5\x00': u'utf_16_le', 't\x00': u'utf_16_le', '\x00]': u'utf_16_be', ' \x00': u'utf_16_le', '\x00f': u'utf_16_be', '\x00\x00\x00n': u'utf_32_be', '\x00n': u'utf_16_be', '1\x00\x00\x00': u'utf_32_le', '\x00\x00\x00t': u'utf_32_be', 't': u'utf_8', '\x00t': u'utf_16_be', '4\x00\x00\x00': u'utf_32_le', '\x00{': u'utf_16_be', '\x00}': u'utf_16_be', '\x00\x00\xfe\xff': u'utf_32', '7\x00\x00\x00': u'utf_32_le', '0\x00': u'utf_16_le', '8\x00': u'utf_16_le', 'f\x00': u'utf_16_le', '3': u'utf_8', '7': u'utf_8', '{\x00\x00\x00': u'utf_32_le', ']\x00': u'utf_16_le', '\x00\x00\x00}': u'utf_32_be', '\t\x00': u'utf_16_le', '[': u'utf_8', '3\x00': u'utf_16_le', '\x00\x00\x00{': u'utf_32_be', '{': u'utf_8', '-\x00\x00\x00': u'utf_32_le', '\n': u'utf_8', '0\x00\x00\x00': u'utf_32_le', 'n\x00\x00\x00': u'utf_32_le', '6\x00': u'utf_16_le', '\x00\x00\x004': u'utf_32_be', '"': u'utf_8', '3\x00\x00\x00': u'utf_32_le', '\x003': u'utf_16_be', '\x00\x00\x00[': u'utf_32_be', '\x00\x00\x006': u'utf_32_be', '2': u'utf_8', '}\x00': u'utf_16_le', '6\x00\x00\x00': u'utf_32_le', '6': u'utf_8', 't\x00\x00\x00': u'utf_32_le', '\x00\x00\x000': u'utf_32_be', '\x007': u'utf_16_be', '\x00\x00\x002': u'utf_32_be', '9\x00\x00\x00': u'utf_32_le', '\t\x00\x00\x00': u'utf_32_le', '1\x00': u'utf_16_le', '[\x00': u'utf_16_le', '[\x00\x00\x00': u'utf_32_le', '\x009': u'utf_16_be', ' \x00\x00\x00': u'utf_32_le', 'f': u'utf_8', '9\x00': u'utf_16_le', '}\x00\x00\x00': u'utf_32_le', 'n': u'utf_8', '\xfe\xff': u'utf_16', '\t': u'utf_8', '\n\x00\x00\x00': u'utf_32_le', '\r': u'utf_8', '\r\x00\x00\x00': u'utf_32_le', '\n\x00': u'utf_16_le', '4\x00': u'utf_16_le', '-': u'utf_8', '1': u'utf_8', '{\x00': u'utf_16_le', '5': u'utf_8', '9': u'utf_8', '\xff\xfe': u'utf_16', '2\x00\x00\x00': u'utf_32_le', '\x00\x00\x005': u'utf_32_be', 'n\x00': u'utf_16_le', '5\x00\x00\x00': u'utf_32_le', '\x00\x00\x003': u'utf_32_be', ']': u'utf_8', '\x00\x00\x009': u'utf_32_be', '"\x00': u'utf_16_le', '\r\x00': u'utf_16_le', '7\x00': u'utf_16_le', '8\x00\x00\x00': u'utf_32_le', '}': u'utf_8'}, complete=True)

	Determine the encoding of a UTF-x encoded string.

The argument starts must be a mapping of bytestrings the input
can begin with onto the encoding that such a beginning would
represent (see licit_starts() for a function that can build
such a mapping).

The complete flag signifies whether the input represents the
entire string: if it is set False, the function will attempt
to determine the encoding, but will raise a UnicodeError if it
is ambiguous. For example, an input of b'\xff\xfe' could be
the UTF-16 little-endian byte-order mark, or, if the input is
incomplete, it could be the first two characters of the UTF-32-LE
BOM:

>>> sniff_encoding(b'\xff\xfe') == 'utf_16'
True
>>> sniff_encoding(b'\xff\xfe', complete=False)
Traceback (most recent call last):
 ...
UnicodeError: String encoding is ambiguous.

	
json_delta._util.stanzas_addressing(stanzas, keypath)

	Find diff stanzas modifying the structure at keypath.

The purpose of this function is to keep track of changes made to
the overall structure by stanzas earlier in the sequence, e.g.:

>>> struc = [
... 'foo',
... 'bar', [
... 'baz'
...]
...]
>>> stanzas = [
... [[2, 1], 'quux'],
... [[0]],
... [[1, 2], 'quordle']
...]
>>> (stanzas_addressing(stanzas, [2])
... == [
... [[1], 'quux'],
... [[2], 'quordle']
...])
True

stanzas[0] and stanzas[2] both address the same element of
struc — the list that starts off as ['baz'], even though
their keypaths are completely different, because the diff stanza
[[0]] moves the list ['baz'] from index 2 of struc to
index 1.

The return value is a sub-diff: a list of stanzas fit to modify
the element at keypath within the overall structure.

	
json_delta._util.struc_lengths(struc)

	Build dicts for lengths of nodes in a JSON-serializable structure.

Return value is a 2-tuple (terminals, nonterminals). The
terminals dict is keyed by the values of the terminal nodes
themselves, as these are all hashable types.

WARNING: The nonterminals dict is keyed by the id() [https://docs.python.org/2/library/functions.html#id]
value of the list or dict, so if the object is modified after this
function is called, the lengths recorded may no longer be valid.

	
json_delta._util.uniquify(obj, key=<function <lambda>>)

	Remove duplicate elements from a list while preserving order.

key works as for min() [https://docs.python.org/2/library/functions.html#min], max() [https://docs.python.org/2/library/functions.html#max], etc. in the
standard library.

	
json_delta._util.whitespace_count(obj, indent=1, margin=1, nest_level=0)

	Count whitespace chars that json [https://docs.python.org/2/library/json.html#module-json] will use encoding obj

Javascript implementation notes

The Javascript implementation provides an object JSON_delta that
encapsulates the principal functions (use JSON_delta.patch and
JSON_delta.diff). JSON-format diffs and patches are supported,
and the diffs can be made compact (set the minimal parm to
JSON_delta.diff to true). Udiffs and upatching are not yet
supported: email me if you’d like to see them!

Racket implementation notes

The Racket implementation passes the test suite, but is about as slow
as a wet weekend. Refactoring for speed will be gotten around to Real
Soon Now...

Perl implementation notes

Development of the Perl implementation stalled when it was discovered
that, because Perl doesn’t have as ramified a type ontology as
Javascript, numeric values do not round-trip cleanly [http://search.cpan.org/~makamaka/JSON-2.53/lib/JSON.pm#MAPPING].
This makes it impossible to produce an implementation that passes the
test suite using available JSON libraries.

Licenses

Source

The JSON-delta source code is copyright 2012-2015 Philip J. Roberts.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This documentation

This documentation is copyright 2014-2015 Philip J. Roberts. All
rights reserved.

Redistribution and use in source (ReST/Sphinx) and ‘compiled’ forms
(SGML, HTML, PDF, PostScript, RTF and so forth) with or without
modification, are permitted provided that the following conditions are
met:

Redistributions of source code (ReST/Sphinx) must retain the above
copyright notice, this list of conditions and the following disclaimer
as the first lines of this file unmodified.

Redistributions in compiled form (transformed to other DTDs, converted
to PDF, PostScript, RTF and other formats) must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

THIS DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 json_delta	

 	
 	
 json_delta._diff	

 	
 	
 json_delta._patch	

 	
 	
 json_delta._udiff	

 	
 	
 json_delta._upatch	

 	
 	
 json_delta._util	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	_load_and_func() (in module json_delta._util)

A

 	
 	add_matter() (in module json_delta._udiff)

 	
 	all_paths() (in module json_delta._util)

 	append_key() (in module json_delta._diff)

C

 	
 	check_diff_structure() (in module json_delta._util)

 	commafy() (in module json_delta._udiff)

 	commonality() (in module json_delta._diff)

 	
 	compact_json_dumps() (in module json_delta._util)

 	compute_diff_stats() (in module json_delta._diff)

 	compute_keysets() (in module json_delta._diff)

 	curry_functions() (in module json_delta._udiff)

D

 	
 	decode_json() (in module json_delta._util)

 	decode_udiff() (in module json_delta._util)

 	
 	diff() (in module json_delta)

 	(in module json_delta._diff), [1]

E

 	
 	ellipsis_handler() (in module json_delta._upatch)

F

 	
 	follow_path() (in module json_delta._util)

G

 	
 	Gap (class in json_delta._udiff)

 	
 	generate_udiff_lines() (in module json_delta._udiff)

I

 	
 	in_array() (in module json_delta._util)

 	in_object() (in module json_delta._util)

 	
 	in_x_error() (in module json_delta._util)

 	is_none_key() (in module json_delta._upatch)

J

 	
 	json_bytestring_length() (in module json_delta._util)

 	json_delta (module)

 	json_delta._diff (module)

 	json_delta._patch (module)

 	
 	json_delta._udiff (module)

 	json_delta._upatch (module)

 	json_delta._util (module)

 	json_length() (in module json_delta._util)

K

 	
 	key_tracker() (in module json_delta._util)

 	
 	keypath_lengths() (in module json_delta._util)

L

 	
 	licit_starts() (in module json_delta._util)

 	load_and_diff() (in module json_delta)

 	
 	load_and_patch() (in module json_delta)

 	load_and_udiff() (in module json_delta)

 	load_and_upatch() (in module json_delta)

N

 	
 	nearest_of() (in module json_delta._util)

P

 	
 	patch() (in module json_delta)

 	(in module json_delta._patch), [1]

 	
 	patch_bands() (in module json_delta._udiff)

 	patch_stanza() (in module json_delta._patch)

 	predicate_count() (in module json_delta._util), [1]

R

 	
 	read_bytestring() (in module json_delta._util)

 	
 	reconstruct_alignment() (in module json_delta._udiff)

 	reconstruct_diff() (in module json_delta._upatch)

S

 	
 	single_patch_band() (in module json_delta._udiff)

 	skip_key() (in module json_delta._upatch)

 	skip_string() (in module json_delta._util)

 	sniff_encoding() (in module json_delta._util), [1]

 	sort_stanzas() (in module json_delta._diff)

 	(in module json_delta._upatch)

 	
 	split_diff() (in module json_delta._diff)

 	stanzas_addressing() (in module json_delta._util)

 	struc_lengths() (in module json_delta._util)

 	structure_comparable() (in module json_delta._diff)

T

 	
 	this_level_diff() (in module json_delta._diff)

U

 	
 	udiff() (in module json_delta)

 	(in module json_delta._udiff), [1]

 	udiff_dict() (in module json_delta._udiff)

 	udiff_key_tracker() (in module json_delta._upatch)

 	
 	udiff_list() (in module json_delta._udiff)

 	uniquify() (in module json_delta._util), [1]

 	upatch() (in module json_delta)

 	(in module json_delta._upatch), [1]

W

 	
 	whitespace_count() (in module json_delta._util)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/file.png

nav.xhtml

 Table of Contents

 		JSON-delta: a diff/patch pair for JSON-serialized data structures

 		JSON-delta by example

 		The JSON-delta API

 		Core functions

 		load_and_*

 		json_diff

 		Synopsis

 		Description

 		Options

 		Examples

 		Implementation Notes

 		json_patch

 		Synopsis

 		Description

 		Options

 		Udiff Format

 		Implementation Notes

 		json_cat

 		Synopsis

 		Description

 		Examples

 		Python implementation notes

 		json_delta._diff

 		json_delta._patch

 		json_delta._udiff

 		json_delta._upatch

 		json_delta._util

 		Javascript implementation notes

 		Racket implementation notes

 		Perl implementation notes

 		Licenses

 		Source

 		This documentation

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

